

Содержание

	Стр
1. Общая характеристика и основная деятельность филиала	2
2. Экологическая политика филиала	7
3. Системы экологического менеджмента, менеджмента качества и	9
менеджмента охраны здоровья и безопасности труда	
4. Производственный экологический контроль, радиационный	10
контроль и мониторинг окружающей среды	
5. Воздействие на окружающую среду	15
5.1. Забор воды из водных источников	16
5.2. Сбросы в открытую гидрографическую сеть	16
5.3. Сбросы вредных химических веществ	16
5.4. Сбросы радионуклидов	16
5.5. Выбросы в атмосферный воздух	17
5.6. Выбросы радионуклидов	18
5.7. Обращение с отходами производства и потребления	21
5.8. Обращение с радиоактивными отходами	22
6. Текущие затраты на охрану окружающей среды	23
7. Сведения о реализуемых мероприятиях в области охраны	24
окружающей среды и их эффектах	21
8. Социально-экологическая и информационно-просветительская	25
деятельность.	
9. Адреса и контакты	26

1. Общая характеристика и основная деятельность ОДИЦ

1.1. Цели и задачи

Опытно-демонстрационный инженерный центр по выводу из эксплуатации (ОДИЦ) является филиалом АО «Концерн Росэнергоатом» (входит в крупнейший дивизион Госкорпорации «Росатом» - «Электроэнергетический»).

Филиал создан 16 января 2013 г. с целью безопасного вывода из эксплуатации остановленных атомных энергоблоков. В своей деятельности филиал руководствуется Положением о филиале.

ОДИЦ был организован на базе Нововоронежской АЭС и осуществляет работы по пилотному проекту вывода из эксплуатации блоков № 1 и № 2 этой атомной станции с реакторными установками ВВЭР. Успешный референтный опыт, полученный в рамках реализации этого пилотного проекта, будет обобщаться, систематизироваться и распространяться на все выводимые из эксплуатации блоки АЭС.

Цели и основные задачи ОДИЦ:

Практическая реализация работ по выводу из эксплуатации блоков АС

Реализация проекта вывода из эксплуатации 1 и 2 блоков НВАЭС;

Разработка, испытания, отработка, применение и демонстрация технологических процессов и оборудования для вывода из эксплуатации ОИАЭ и обращения с РАО;

Ведение мониторинга стоимости выполняемых работ, формирование статистической базы для разработки нормативов трудоёмкости и стоимости работ по выводу из эксплуатации;

Обеспечение физической защиты ядерных установок, радиационных источников, пунктов хранения и радиоактивных веществ;

Обеспечение серийного вывода из эксплуатации ОИАЭ на основе тиражирования типовых технологий

Получение референтных технологий (работ, услуг), пригодных к тиражированию (применению) для работ по выводу из эксплуатации ВВЭР различных типов;

Получение типовых (референтных) экономических показателей, пригодных для оценки затрат на вывод из эксплуатации однотипных ЯРОО

Создание баз данных и информационных систем, содержащих информацию о технологических процессах, методах и средствах для вывода из эксплуатации ОИАЭ;

Разработка, сопровождение и реализация единой научно-технической политики Общества в области вывода из эксплуатации ОИАЭ

Отработка нормативноправовых, финансовоэкономических и организационных механизмов вывода из эксплуатации ЯРОО;

Анализ радиационной безопасности и совершенствование радиационного контроля на стадии вывода из эксплуатации ОИАЭ;

Организация образовательной деятельности по программам профессиональной подготовки персонала для работ по выводу из эксплуатации;

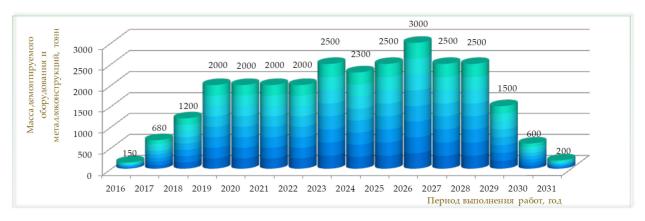
Создание базового проекта вывода из эксплуатации однотипных ЯРОО

Базовым объектом для деятельности ОДИЦ являются блоки № 1, № 2 Нововоронежской АЭС, взаимоотношения с которым определяются отдельным регламентом, утверждённым Генеральным директором АО «Концерн Росэнергоатом».

В 1984 году из эксплуатации после 20-летней работы был выведен энергоблок \mathbb{N}_2 1 Нововоронежской АЭС, в 1990 году – энергоблок \mathbb{N}_2 2 Нововоронежской АЭС. С этих энергоблоков вывезено ядерное топливо, и они переведены в ядерно-безопасное состояние.

На основании приказа АО «Концерн Росэнергоатом» от 31.12.2015 № 9/1533-П «О приеме-передаче имущества» и в рамках «Регламента взаимодействия между филиалами АО «Концерн Росэнергоатом» «Нововоронежская атомная станция» и «Опытно-демонстрационный центр по выводу из эксплуатации»» от 23.09.2016 осуществлена передача энергоблоков № 1 и № 2 Нововоронежской АЭС на баланс филиала ОДИЦ.

На основании вышеуказанного Регламента разработано и введено в действие совместным приказом филиалов от 03.10.2016 № 573-П/9/1100-Ф07-32/07 «Соглашение по экологической безопасности между филиалами «Нововоронежская атомная станция» и «Опытно-демонстрационный центр по выводу из эксплуатации»».



Решением Научнозаседания технического совета АО «Концерн Росэнергоатом» 26.07.2016 ОТ определена в качестве приоритетной стратегия вывода эксплуатации ИЗ блоков АЭС на базе варианта «ликвидация блока AC» и способа его «немедленный реализации демонтаж».

Этапы проведения:

- ✓ Подготовка к ликвидации продолжительность этапа 5 лет;
- ✓ Ликвидация блока АС продолжительность этапа 15 лет.

За десять лет работы по выводу из эксплуатации в филиале был создан комплекс плазменной переработки твёрдых радиоактивных отходов, комплекс установок дезактивации оборудования и пластикатов, а также накоплен необходимый практический опыт и выбраны наиболее эффективные организационно-технические, проектно-конструкторские и технологические решения, которые впоследствии станут референтными для тиражирования на других АЭС России и зарубежья.

Технологический парк ОДИЦ на сегодняшний день насчитывает более 30 единиц установок и оборудования по демонтажу, фрагментации, переработке и дезактивации.

Участок сортировки

Участок дезактивации

1.2. Структура филиала

Основной состав персонала ОДИЦ имеет многолетний опыт эксплуатации энергоблоков № 1и № 2 Нововоронежской АЭС.

В состав ОДИЦ входят следующие структурные подразделения:

- 1. Управление производством:
- информационно-демонстрационный учебный центр;
- лаборатория производственного контроля;
- отдел технологического обеспечения;
- производственно-технический отдел;
- цех демонтажа и дезактивации;
- цех по обращению с радиоактивными отходами.

- 2. Служба Главного инженера:
- отдел радиационной безопасности;
- цех организации и проведения ремонта;
- цех по эксплуатации тепломеханического оборудования;
- цех по эксплуатации электрического оборудования и систем контроля и управления.
 - 3. Административные, финансовые и инспекционные подразделения:
- управление закупок, договоров, материально-технического обеспечения;
 - отдел административно-хозяйственного обеспечения;
 - отдел управления персоналом;
 - отдел правового обеспечения и имущественных отношений;
 - отдел перспективного развития;
 - служба безопасности;
 - бухгалтерия;
 - финансово-экономический отдел;
 - отдел охраны труда и организации безопасности производства.

Макет комплекса плазменной переработки

Цех по обращению с радиоактивными отходами осуществляет прием, сортировку, компактирование, переработку, учет и отправку РАО оператору на длительное хранение (захоронение). Проводит организацию работ по обращению с радиоактивными отходами на комплексе плазменной переработки. Обеспечивает надежную и безопасную работу систем и плазменной переработки. оборудования комплекса Поддерживает оборудования, здания и сооружения в исправном состоянии (КПП РАО). Число работников ЦОРО составляет 62 человека из них число оперативного персонала составляет 40 человек. Задействованы на сортировке ТРО 7 человек. Группа учета и контроля РВ и РАО 5 человек.

Технологический Комплекс плазменной переработки РАО предназначен для глубокой термической переработки РАО низкого и среднего уровня

активности смешанной морфологии с применением метода плазменнопиролитической конверсии отходов И получения В одну кондиционного продукта, не требующего дальнейшего кондиционирования. При значительно сокращается объем отходов, подлежащих долговременному хранению, так как отходы переводятся в форму, максимально безопасную для окружающей среды.

Лаборатория производственного контроля осуществляет физикохимический контроль и радиометрические изменения активности состояния технологического процесса, состава сточных вод предприятия.

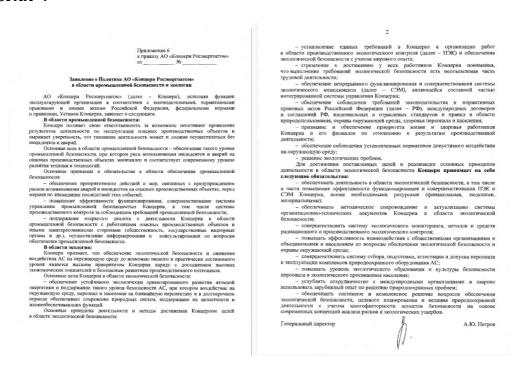
Цех организации и проведения ремонта организует и проводит техническое обслуживание и ремонт оборудования, зданий и сооружений ОДИЦ.

Цех по эксплуатации электротехнического оборудования и систем контроля и управления обеспечивает надежную и эффективную работу закрепленного электротехнического оборудования и систем контроля и управления.

Цех по эксплуатации тепломеханического оборудования обеспечивает безопасное ведение основного технологического процесса при эксплуатации тепломеханического оборудования зданий и сооружений, закрепленных за цехом, в установленных эксплуатационных пределах и условиях, а также переработку ЖРО на установке глубокого упаривания (УГУ).

Отдел радиационной безопасности обеспечивает проведение производственного радиационного контроля состояния безопасности выводимых из эксплуатации блоков № 1 и № 2 НВ АЭС, прилегающей территории и объектов ОДИЦ.

Цех по демонтажу и дезактивации занимается следующими вопросами:


- демонтаж и фрагментация тепломеханического оборудования, трубопроводов, технологических систем, металлоконструкций в помещениях ЗКД блоков № 1 и № 2;
- дезактивация фрагментов демонтированного тепломеханического оборудования, трубопроводов, технологических систем, металлоконструкций на стационарных установках дезактивации:
- установка ультразвуковой дезактивации (пом. C805 «Монтажный зал»);
- установка электрохимической дезактивации (пом. 1101 «Участок дезактивации»);
- дезактивация фрагментов демонтированного тепломеханического оборудования, трубопроводов, технологических систем, металлоконструкций с применением мобильных установок дезактивации (пом. A223, «Транспортный коридор»);
- эксплуатация парка установок по фрагментации тепломеханического оборудования, трубопроводов, технологических систем, металлоконструкций и строительных конструкций блоков АЭС, выводимых из эксплуатации:
- станочного оборудования стационарного поста фрагментации, расположенного в пом. A601 «Центральный зал аппаратного отделения»;

- специальных средств технологического оснащения для выполнения демонтажных работ.

Отдел охраны труда и организации безопасности производства (далее ООТиОБП) представлен специалистами охраны труда, пожарной безопасности, промышленной (технической безопасности) и охраны окружающей среды. Возглавляет отдел начальник. В структуру отдела входит специалист по охране окружающей среды и ведущий специалист, на которых должностными инструкциями и положением об отделе возложены функции и обязанности по исполнению природоохранного законодательства.

2. Экологическая политика филиала

В рамках реализации заявления о Политике АО «Концерн Росэнергоатом» в области промышленной безопасности и экологии в филиале приказом от 18.07.2018 № 9/596-02-50 введено заявление о Политике АО «Концерн Росэнергоатом» в области промышленной безопасности и экологии».

Филиал признает, что обеспечение экологической безопасности и снижение воздействия АС на окружающую среду до возможно низкого и практически достижимого уровня является высшим приоритетом Концерна наряду с достижением высоких экономических показателей и безопасным развитием производственного потенциала.

Основные цели филиала в области экологической безопасности: обеспечение устойчивого экологически ориентированного развития атомной энергетики и поддержание такого уровня безопасности АС, при котором воздействие на окружающую среду, персонал и население на ближайшую

перспективу и в долгосрочном периоде обеспечивает сохранение природных систем, поддержание их целостности и жизнеобеспечивающих функций.

Основные принципы деятельности и методы достижения филиалом целей в области экологической безопасности:

- установление единых требований в Концерне к организации работ в области производственного экологического контроля (далее ПЭК) и обеспечения экологической безопасности с учетом мирового опыта;
- стремление к достижению у всех работников Концерна понимания,
 что выполнение требований экологической безопасности есть неотъемлемая
 часть трудовой деятельности;
- обеспечение непрерывного функционирования и совершенствования системы экологического менеджмента (далее СЭМ), являющейся составной частью интегрированной системы управления Концерна;
- обеспечение соблюдения требований законодательства и нормативных правовых актов Российской Федерации (далее РФ), международных договоров и соглашений РФ, национальных и отраслевых стандартов и правил в области природопользования, охраны окружающей среды, здоровья персонала и населения;
- признание и обеспечение приоритета жизни и здоровья работников Концерна и его филиалов по отношению к результатам производственной деятельности;
- обеспечение соблюдения установленных нормативов допустимого воздействия на окружающую среду;

Для достижения поставленных целей и реализации основных принципов деятельности в области экологической безопасности филиал принимает на себя следующие обязательства:

- обеспечивать деятельность в области экологической безопасности, в том числе в части повышения эффективности функционирования и совершенствования ПЭК и СЭМ Концерна, всеми необходимыми ресурсами (финансовыми, людскими, материальными);
- обеспечивать методическое сопровождение и актуализацию системы организационно-технических документов Концерна в области экологической безопасности;
- совершенствовать систему экологического мониторинга, методов и средств радиационного и производственного экологического контроля;
- повышать эффективность взаимодействия с общественными организациями и объединениями и населением по вопросам обеспечения экологической безопасности и охраны окружающей среды;
- совершенствовать систему отбора, подготовки, аттестации и допуска персонала к эксплуатации комплексов природоохранного оборудования AC;
- повышать уровень экологического образования и культуры безопасности персонала и экологического просвещения населения;
- углублять сотрудничество с международными организациями и широко использовать зарубежный опыт по решению природоохранных проблем;

- обеспечивать системное и комплексное решение вопросов обеспечения экологической безопасности, целевого планирования и ведения природоохранной деятельности с учетом многофакторности аспектов безопасности на основе современных концепций анализа рисков и экологических ущербов.

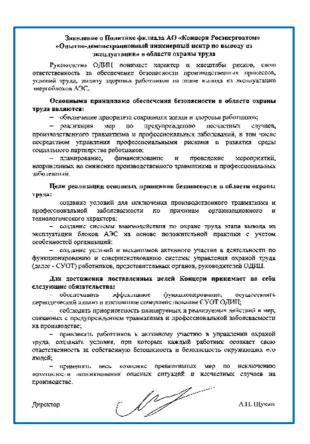
3. Системы экологического менеджмента, менеджмента качества и менеджмента охраны здоровья и безопасности труда

В 2022 году в соответствии с Детализированным планом развития и совершенствования в филиале АО «Концерн Росэнергоатом» «Опытно-демонстрационный инженерный центр по выводу из эксплуатации» Интегрированной системы управления на 2022 год и Детализированным планом развития и совершенствования системы качества в филиале АО «Концерн Росэнергоатом» «Опытно-демонстрационный инженерный центр по выводу из эксплуатации» на 2022 год (приказ ОДИЦ от 01.03.2022 № 9/Ф49/162-П «Об утверждении и введении в действие Детализированных планов ОДИЦ на 2022 год и Графика разработки моделей процессов ОДИЦ) запланировано к исполнению 28 мероприятий. Все мероприятия выполнены в срок.

С декабря 2018 г. в ОДИЦ действует «Положение о системе управления охраной труда, профессиональной безопасности и здоровьем» П-ООТиОБП-018.

В 2022 году продолжилось развитие и совершенствование Интегрированной системы управления ОДИЦ, отвечающей требованиям стандартов МАГАТЭ по безопасности. В частности, особое внимание уделено процессу ИСУ «Обеспечение профессиональной безопасности и здоровья». Разработан паспорт процесса ИСУ «Обеспечение профессиональной безопасности и здоровья» № ОДИЦ-ВВЭР-ПП-ПБЗ.00.00.00, введён в действие приказом от 16.05.2022 № 9/Ф49/375-П.

Ключевым показателем в системе является отсутствия случаев травматизма и профессиональных заболеваний у персонала ОДИЦ и подрядных организаций. За последние 3 года несчастных случаев, профессиональных заболеваний с персоналом ОДИЦ и работниками подрядных организаций не допущено. С 2017 года в филиале введен показатель травматизма LTIFR/CHT - снижение тяжести травматизма на объектах предприятий, включая подрядчиков. В 2022 году показатель LTIFR/CHT выполнен на целевом уровне – 0,15/0.


Приоритетом в достижении показателей безопасности являются реализация политики в области охраны труда, достижение целей в области охраны труда, а также информирование персонала о профессиональных рисках на рабочих местах и мерах управления выявленными рисками.

В рамках решений Госкорпорации «Росатом» и АО «Концерн Росэнергоатом» и Всемирного ДОТ в ОДИЦ реализовано:

- выпущено обращение директора ОДИЦ и председателя ППО ОДИЦ;

- проведены конкурс на лучшего уполномоченного по охране труда ППО ОДИЦ, смотр-конкурс на знание правил охраны труда, смотр – конкурс детских рисунков «Охрана труда глазами детей», смотр - конкурс плакатов, наглядной агитации по охране труда.

Все показатели эффективности СУОТ и ПБЗ по результатам ежемесячного мониторинга не выходили за пределы установленных целевых значений.

В ОДИЦ система экологического менеджмента не введена, отсутствуют наработки по системе экологического менеджмента.

4. Производственный экологический контроль, радиационный контроль и мониторинге окружающей среды

В современных условиях процесс загрязнения компонентов окружающей среды характерен практически для всех техногенных систем, имеет повсеместное распространение, протекает в течение всего времени освоения и использования урбанизированной территории.

Основными направлениями экологического контроля в ОДИЦ являются:

- контроль выбросов загрязняющих веществ в атмосферный воздух;
- контроль в области обращения с отходами.

По результатам производственного экологического контроля выбросов загрязняющих веществ и образования отходов, ОДИЦ в установленном законодательством Российской Федерации порядке предоставляет формы федерального статистического наблюдения в уполномоченные органы Росприроднадзора и органы статистики.

Для обеспечения контроля за охраной окружающей среды в районе АЭС предупреждения негативного воздействия среду Нововоронежской АЭС окружающую на организован производственный экологический контроль (ПЭК) и производственный экологический мониторинг (ПЭМ), которые осуществляются в соответствии с производственного Программами эко логического контроля производственного экологического мониторинга, утвержденными руководством Нововоронежской АЭС.

ПЭМ – осуществляемый в рамках производственного экологического контроля мониторинг состояния и загрязнения окружающей среды, включающий долгосрочные наблюдения за состоянием окружающей среды, ее загрязнением и происходящими в ней природными явлениями, а также оценку и прогноз состояния окружающей среды, ее загрязнения на территориях субъектов хозяйственной и иной деятельности (организаций) и в пределах их воздействия на окружающую среду (МР 1.3.2.09.1159-2016).

Схема зоны наблюдения и санитарно-защитной зоны вокруг Нововоронежской АЭС

Проектная граница санитарно-защитной зоны (СЗЗ) Нововоронежской АЭС представляет собой объединение двух окружностей: одна – радиусом 2,25 км от венттрубы энергоблоков № 3 и № 4, другая – радиусом 2,0 км от венттрубы энергоблока № 5. Площадь СЗЗ - 18 км2.

Проектная граница санитарно-защитной зоны энергоблока № 1 и энергоблока № 2 Нововоронежской АЭС-2 определена в границах, образованных периметром ограждения площадки Нововоронежской АЭС-2, общей площадью 76,79 га и находится внутри СЗЗ Нововоронежской АЭС (проект СЗЗ утвержден Постановлением администрации городского округа – города Нововоронеж от 12.03.2010 № 586).

Объектами ПЭК и ПЭМ Нововоронежской АЭС являются все компоненты окружающей среды, находящиеся на промплощадке АЭС и в ее санитарно-защитной зоне.

Объекты ПЭК:

- природные подземные воды;
- сточные возвратные, ливневые (дождевые, талые) воды;
- промышленные выбросы вредных загрязняющих веществ в атмосферный воздух;
 - недра;
 - отходы производства и потребления.

Объекты ПЭМ:

- природные объекты: вода (гидробиологический, геохимический, гидрологический, биолого-химический мониторинг, контроль микробиологических показателей), атмосферный воздух, почвенный покров, донные отложения и совокупности этих систем с точки зрения определения в них загрязняющих химических веществ, изменяющих сложившееся экологическое равновесие в окружающей среде в районе расположения Нововоронежской АЭС;
- физические факторы (шум, электромагнитное поле, вибрация, влажность, происходящие от деятельности Нововоронежской АЭС);
- фитоценозы и зооценозы в районе расположения Нововоронежской AЭC.
- В вышеперечисленных объектах осуществляется определение содержания загрязняющих веществ на соответствие установленным для Нововоронежской АЭС нормативам сбросов, выбросов, образования отходов и лимитов на их размещение.

Наиболее репрезентативными показателями геоэкологического состояния водосбросов являются поверхностные воды, транспортирующие загрязняющие вещества, а также донные отложения и почвы, депонирующие их.

Организационной структурой, обеспечивающей ПЭК и ПЭМ на Нововоронежской АЭС, является Отдел охраны окружающей среды.

Контроль водных сред и качества природных поверхностных, сбросных и подземных вод осуществляет водно-радиохимическая лаборатория химического цеха, имеющая аккредитацию на техническую компетентность в органах Ростехрегулирования (аттестат аккредитации от 21.01.2016 № RA.RU.518574, выданной бессрочно).

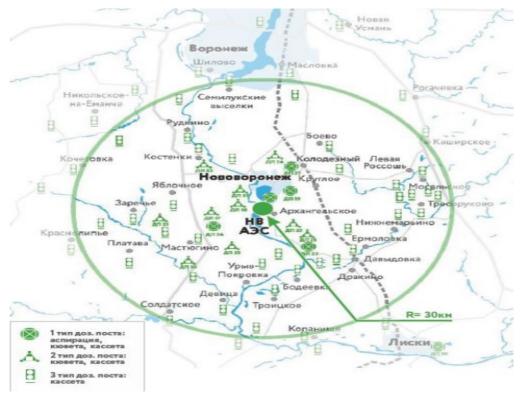
Водно-радиохимическая лаборатория химического цеха в соответствии с утвержденным штатным расписанием укомплектована персоналом, соответствующим квалификационным требованиям.

Лабораторный контроль обеспечен средствами измерения физикохимических параметров, вспомогательными средствами измерения, испытательным оборудованием, вспомогательным оборудованием для отбора проб. Применяемые средства измерения внесены в Госреестр, проходят периодическую метрологическую поверку и аттестацию.

Контроль проводится в соответствии с аттестованными методиками физико-химического контроля, разработанными на основе требований Федеральных норм и правил в области использования атомной энергии, санитарных правил и норм, ГОСТ-ов.

Схема постов контроля поверхностных природных, сточных возвратных хозяйственно-бытовых вод Нововоронежской АЭС

Проведение измерений содержания контролируемых показателей в атмосферном воздухе с целью оценки соблюдения нормативов допустимых выбросов, оценку количественного химического состава почв, донных отложений, состояния наземных и водных экосистем и контроль сточных вод организуют Отдел охраны окружающей среды путем привлечения на


договорной основе специализированных организаций, имеющих право на выполнение данного вида работ.

Результаты проведения в 2022 году производственного экологического контроля и мониторинга на территории Нововоронежской АЭС изложены в Отчете по экологическому контролю и мониторингу в районе размещения филиала АО «Концерн Росэнергоатом» «Нововоронежская атомная станция».

В соответствии с Программой ведения объектного мониторинга состояния недр цех обеспечивающих систем Нововоронежской АЭС осуществляет систематические наблюдения за состоянием гидротехнических сооружений, контролирует уровень грунтовых вод и состояние сети пьезометрических скважин. Результаты изложены в Информационном отчёте по теме «Проведение объектового мониторинга состояния недр Нововоронежской АЭС в 2022 году».

В санитарно-защитной зоне и зоне наблюдения Нововоронежской АЭС действует автоматизированная система контроля радиационной обстановки (АСКРО). В настоящее время вокруг Нововоронежской АЭС расположено 33 поста АСКРО.

Карта-схема дозиметрических постов зоны наблюдения и санитарно-защитной зоны вокруг Нововоронежской АЭС

Система производит в непрерывном режиме измерения мощности дозы гамма-излучения в районе размещения АЭС, обеспечивает информационную поддержку при оценке последствий аварий и выработке рекомендаций по мерам защиты населения.

В режиме нормальной эксплуатации Нововоронежской АЭС система объективно подтверждает соответствие измеряемого значения мощности дозы

естественному радиационному фону, характерному для района размещения Нововоронежской АЭС.

Система работает в режиме реального времени: информация из АСКРО НВ АЭС, в автоматическом режиме поступает на центральный пост, размещённый в Кризисном центре Концерна «Росэнергоатом», передается в отраслевую АСКРО Госкорпорации «Росатом» и используется для оценки реально сложившейся радиационной обстановки в санитарно-защитной зоне и зоне наблюдения Нововоронежской АЭС.

Мониторинг радиационных параметров объектов Нововоронежской окружающей АЭС, Нововоронежской **АЭС-2** объектов лабораторными методами входит функциональные обязанности В лаборатории радиационного контроля лаборатории внешнего И радиометрического контроля отдела радиационной безопасности.

Основным организационным документом при проведении радиационного контроля окружающей среды в условиях нормальной эксплуатации Нововоронежской АЭС является «Регламент радиационного контроля окружающей среды на НВ АЭС» № 55-ОРБ, на основании которого персоналом лаборатории внешнего радиационного контроля ежегодно выполняется около 55 000 процедур регламентного контроля.

Лаборатория внешнего радиационного контроля в соответствии с утвержденным штатным расписанием полностью укомплектована персоналом, соответствующим квалификационным требованиям.

Лабораторный контроль обеспечен средствами измерения ионизирующих излучений, вспомогательными средствами измерения веса, объема, расхода воздуха, вспомогательным оборудованием для отбора проб и подготовки счетных образцов. Применяемые средства измерения внесены в Госреестр и проходят периодическую метрологическую поверку.

Контроль проводится в соответствии с аттестованными методиками радиационного контроля, разработанными на основе требований Федеральных норм и правил в области использования атомной энергии, санитарных правил и норм, ГОСТ-ов.

Отдел радиационной безопасности в целом, в состав которого входят ACKPO, лаборатория внешнего радиационного контроля И **VЧасток** аккредитован В Федеральной службе ПО аккредитации качестве испытательной лаборатории (согласно ГОСТ ИСО/МЭК 17025) и имеет аттестат аккредитации от 01.11.2018 № RA.RU.21HH31.

5. Воздействие на окружающую среду

Филиал ОДИЦ поставлен на государственный учёт как объект, оказывающий умеренное негативное воздействие на окружающую среду (свидетельство от 30.12.2016 № AO4LRE36), с отнесением его ко II категории негативного воздействия на ОС.

5.1. Забор воды из водных источников

Источником забора воды систем технического водоснабжения блоков № 1 и № 2 ОДИЦ является система циркуляционного водоснабжения НВ АЭС.

Система циркуляционного водоснабжения НВ АЭС предназначена для:

- обеспечения работоспособности систем технического водоснабжения машинного, реакторного отделений и спецводоочистки блоков № 1 и № 2 ОДИЦ;
- подпитки систем циркуляционного водоснабжения блоков №№ 3-5 HB AЭC.

Расчёт потребления технической воды блоков № 1 и № 2 ОДИЦ осуществляется путём умножения количества часов работы оборудования, осуществляющего забор технической воды, на номинальный расход. Ведомости учёта часов работы оборудования ведутся ежесменно дежурным персоналом ЦЭТМО ОДИЦ в соответствии с ежесуточными ведомостями учёта числа часов работы. Ежесуточные ведомости собираются персоналом ПТО ОДИЦ для анализа и обобщения. В последний день отчётного месяца заполненные итоговые ведомости передаются ПТО ОДИЦ в ПТО Нововоронежской АЭС.

5.2. Сбросы в открытую гидрографическую сеть

Технологические системы ОДИЦ сбросов сточных вод в открытую гидрографическую сеть не производят. Сброс сточных вод производится в системы хозфекальной и промливневой канализациии НВ АЭС.

5.3. Сбросы вредных химических веществ

Сброс загрязняющих химических веществ филиалом ОДИЦ не осуществляется.

5.4. Сбросы радионуклидов

Сбросные воды Опытно-демонстрационного инженерного центра по выводу из эксплуатации не имеют отдельного выпуска на поля фильтрации Нововоронежской АЭС и сброс балансных вод в коллектор хозфекальной канализации Нововоронежской АЭС, в связи с этим опытно-демонстрационному инженерному центру по выводу из эксплуатации не может быть выдано отдельное Разрешение Ростехнадзора на сброс радиоактивных веществ в окружающую среду. В таблице приведены фактические данные сбросных вод НВ АЭС с учетом сброса ОДИЦ.

В 2019 году был выпущен новый совместный приказ НВ АЭС и ОДИЦ от 23.01.2019 № 9/188-Ф07-П и № 9/58-Ф49-П «Об установлении контрольного уровня на сброс радиоактивных веществ».

Превышение допустимых сбросов радионуклидов в 2022 году не зарегистрировано.

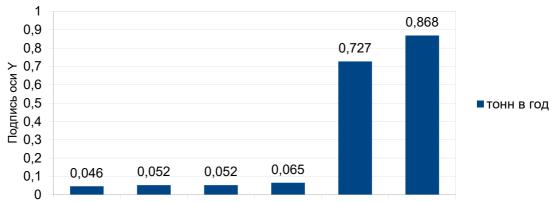
Радионуклид Фактический		Допустимый	Отношение	
	сброс	сброс (ДС)	фактического сброса к ДС	

	Бк/год	Бк/год	
H_3	1.18E+13	3.60E+13	3.3E-01
Mn ⁵⁴	1.45E+07	6.34E+09	2.3E-03
Co ⁶⁰	1.83E+07	2.21E+09	8.3E-03
Ru ¹⁰⁶	1.24E+08	2.28E+10	5.4E-03
Cs ¹³⁴	1.48E+07	2.61E+09	5.7E-03
Cs ¹³⁷	3.36E+07	4.60E+09	7.3E-03

5.5. Выбросы в атмосферный воздух

В 2022 году для филиала ОДИЦ разработан проект нормативов допустимых выбросов (ПДВ). Разрешенный выброс загрязняющих веществ в атмосферу в соответствии с проектом ПДВ составляет 0.868 т., за 2022 год количество выбросов составило 0,727 т.

На основании учета фактического расхода сырья и материалов, времени работы оборудования, сделаны расчёты выбросов загрязняющих веществ в атмосферный воздух для заполнения отчётности по форме 2-ТП (воздух).


Превышение предельно-допустимых выбросов загрязняющих веществ (за исключением радиоактивных) в 2022 году не зарегистрировано.

Филиал АО «Концерн Росэнергоатом» «ОДИЦ» относится к 3-ей категории предприятия по воздействию его выбросов на атмосферный воздух.

Для сокращения объемов выбросов для филиала ОДИЦ в период неблагоприятных метеорологических условий разработан и согласован с Департаментом природных ресурсов и экологии Воронежской области перечень мероприятий по уменьшению выбросов загрязняющих веществ в атмосферу в периоды неблагоприятных метеорологических условий (НМУ).

Превышение предельно-допустимых выбросов загрязняющих веществ в 2022 году не зарегистрировано.

Информация о динамике вредных химических выбросов за последние 5 лет:

Причина увеличения валового выброса 3В в отчётном 2022 году по сравнению с предыдущим заключается в том, что в проект нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу были включены новые источники выбросов загрязняющих веществ.

Загрязняющие вещества	Выбросы за 2022 год
-----------------------	---------------------

	Всего, в том числе от организованных источников загрязнения	
в том числе твердых	0.066	0.022
в том числе газообразные и жидкие	0.661	0.126
из них: диоксид серы	0.026	0.002
оксид углерода	0.206	0.012
оксид азота (в пересчете на NO2)	0.272	0.014
углеводороды (без летучих органических соединений)	0	0
летучие органические соединения (ЛОС)	0.063	0.004
прочие газообразные и жидкие	0.094	0.094
Серная кислота (по молекуле H2SO4)		0.094
Углерод (Сажа)		0.042
Другие специфические вещества		0.087
Всего	0.727	0.148
Норматив выброса общий	0,836	

В 2022 году в составе декларации о воздействии был подан проект ПДВ.

5.6. Выбросы радионуклидов

В 2019 году приказом от 22.01.2019 № 9/54-Ф49-П «О введении в действие нормативов предельно допустимых выбросов радиоактивных веществ в атмосферный воздух» в ОДИЦ введено Разрешение Донского МТУ по надзору за ЯРБ Ростехнадзора № 35 на выброс радиоактивных веществ в атмосферный воздух, утвержденные приказом Донского МТУ по надзору за ЯРБ Ростехнадзора от 25.12.2018 № 154 со сроком действия до 26.12.2023.

Превышение в ОДИЦ предельно-допустимых выбросов радионуклидов в 2022 году не зарегистрировано.

Радионуклид	Фактический выброс*,	Предельно допустимый выброс (ПДВ)	Отношение фактического выброса к ПДВ
	Бк/год	Бк/год,	ПДО
60-Co	1.36E+06	7.4E+09	1.8E-04
134-Cs	2.19E+05	9.0E+08	2.4E-04
137-Cs	2.01E+07	2.0E+09	1.0E-02

Примечание: *Данные представлены в соответствии с требованиями п. 4.1 СТО 1.1.1.04.001.0143-2015 «Положение о годовых отчетах по оценке состояния безопасной эксплуатации энергоблоков атомных станций» с учетом 1/2 НПИ нормируемых радионуклидов, не обнаруживаемых при проведении контроля в течение отчетного года.

Выбросы РВ происходят в результате:

- переработки ЖРО на установке УГУ-500;
- сжигания ТРО на КПП РАО;
- в результате дезактивации оборудования на установках по дезактивации, расположенных на отметке +32.0 CBO 2 блока, и в ЦЗ-1,2 блоков;
- в результате резки оборудования на участке фрагментации в ЦЗ-1блока;
 - переработки трапных вод на установках СВО 1 блока;
 - в результате демонтажа оборудования на 1, 2 блоках.

Контроль выбросов 1 блока осуществляется автоматизированной системой контроля газоаэрозольных выбросов в которую входит следующее оборудование:

- 1. Устройство детектирования объемной активности радиоактивных аэрозолей УДАС-26
- 2. Устройство детектирования объемной активности бетаизлучающих инертных газов в воздухе УДГБ-49
 - 3. Установка для измерения объемной активности йода-131 УДИ-201
 - 4. Комплекс для измерений параметров воздушного потока МВ-22
 - 5. Ротаметр РМ-4 ГУЗ-K, РМ-2,5 ГУЗ-K
 - 6. Фильтродержатель ФД-02 (с фильтром АФА РМП-20)
 - 7. Радиометр РКС-18Р
- 8. Гамма-спектрометр многоканальный для определения удельной активности и изотопного состава выбрасываемых радиоактивных аэрозолей типа CANBERRA (Лаборатория внешнего радиационного контроля ОРБ НВ АЭС).

Контроль выбросов 2 блока осуществляется автоматизированной системой контроля газоаэрозольных выбросов в которую входит следующее оборудование:

- 1. Устройство детектирования объемной активности радиоактивных аэрозолей УДАС-26
- 2. Устройство детектирования объемной активности бетаизлучающих инертных газов в воздухе УДГБ-49
 - 3. Установка для измерения объемной активности йода-131 УДИ-201
 - 4. Комплекс для измерений параметров воздушного потока МВ-22
 - 5. Ротаметр РМ-4 ГУЗ-K, РМ-2,5 ГУЗ-K
 - 6. Фильтродержатель ФД-02 (с фильтром АФА РМП-20)
 - 7. Радиометр РКС-18Р
- 8. Гамма-спектрометр многоканальный для определения удельной активности и изотопного состава выбрасываемых радиоактивных аэрозолей типа CANBERRA (Лаборатория внешнего радиационного контроля ОРБ НВ АЭС).

Контроль выбросов КПП РАО осуществляется системой радиационного контроля выбросов в которую входит следующее оборудование:

- 1. Установка для измерений объемной активности радиоактивных аэрозолей УДАС-201
 - 2. Комплекс для измерений параметров воздушного потока МВ-22
 - 3. Ротаметр РМ-4 ГУЗ-К
 - 4. Фильтродержатель ФД-02 (с фильтром АФА РМП-20)
 - 5. Радиометр РКС-18Р
- 6. Гамма-спектрометр многоканальный для определения удельной активности и изотопного состава выбрасываемых радиоактивных аэрозолейтипа CANBERRA (Лаборатория внешнего радиационного контроля ОРБ НВ АЭС).

Контроль выбросов XЖО-1 осуществляется системой радиационного контроля выбросов в которую входит следующее оборудование:

- 1. Ротаметр РС-5
- 2. Фильтродержатель ФД-02 (с фильтром АФА РМП-20)
- 3. Радиометр РКС-18Р
- 4. Гамма-спектрометр многоканальный для определения удельной активности и изотопного состава выбрасываемых радиоактивных аэрозолей типа CANBERRA (Лаборатория внешнего радиационного контроля ОРБ НВ АЭС).

Контроль выбросов XЖО-2 осуществляется системой радиационного контроля выбросов в которую входит следующее оборудование:

- 1. Установка для измерения параметров воздушного потока УППВМ
- Ротаметр РС-5
- 3. Фильтродержатель ФД-02 (с фильтром АФА РМП-20)
- 4. Радиометр РКС-18Р
- 5. Гамма-спектрометр многоканальный для определения удельной активности и изотопного состава выбрасываемых радиоактивных аэрозолей типа CANBERRA (Лаборатория внешнего радиационного контроля ОРБ НВ АЭС).

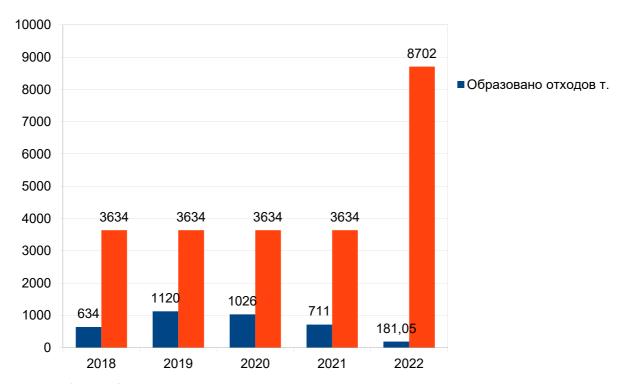
5.7. Обращение с отходами производства и потребления

Основной частью отходов, образованных в филиале ОДИЦ, являются отходы IV-V класса опасности. В соответствии с лимитами на размещение отходы были переданы для захоронения на полигон ТБО.

В 2022 году был заключён договор с региональным оператором по обращению с ТКО ОАО «Экотехнологии» от 18.02.2022 № 22HB-48-9/190759-

Д предано 144 м3.

В 2022 году для филиала ОДИЦ был разработан проект нормативов образования отходов и лимитов на их размещение. Информация об объеме образования и размещения отходов включена в состав декларации о воздействии на окружающую среду.


Передача отходов производства и потребления, осуществляемая филиалом ОДИЦ, подтверждена документально. Учёт отходов ведётся в установленном порядке. Учёту подлежат все виды отходов.

Основные виды и количество отходов производства и потребления образованных в ОДИЦ в 2022 году, с отнесением их к классам опасности

Отходов 4 класса всего образовано 130,8 т., отходов 5 класса всего 50,25 т.

Класс опасности отхода	Наименование отхода	Количество образованных отходов, т.
IV	- отходы (мусор) от строительных и ремонтных работ	91,8
	- отходы шлаковаты незагрязнённые	11,2
	-отходы мебели из разнородных материалов	2,8
V	- тара деревянная, утратившая потребительские	40,2
·	свойства, незагрязненная - лом бетонных изделий, отходы бетона в кусковой форме	7,2
TKO	- мусор от офисных и бытовых помещений	25
770	организаций несортированный (исключая	
(IV-V)	крупногабаритный)	
	- растительные отходы при уходе за древесно-	2,85
	кустарниковыми посадками	

Динамика образования отходов за 5 лет

5.8. Обращение с радиоактивными отходами

- 1. Транспортирование ТРО категорий ОНРАО, НАО, САО в ЗКД 1,2 блоков производится в оборотных и необоротных металлических контейнерах (М055.02.00.000, Б31А2-200, МК-0,2 и др.), чтобы ограничить распространение РВ.
- 2. Сортировка TPO осуществляется на узле сортировки, представляющем собой конструкцию из стекла и металла и ограничивающем распространение PB на этапе сортировки.
- Временное хранение/размещение TPO производится хранилищах или местах, определенных техническим решением. Все ТРО, поступающие на хранение упакованы в контейнеры. Для пунктов временного размещения ТРО без физической защиты в виде стен (других конструкций, поглощающих излучение) создается ограждение на основании радиационной TPO. картограммы пункта временного размещения Ограждение устанавливается на таком расстоянии, чтобы персонал, находящийся в непосредственной близости от пункта временного хранения ТРО, не получал необоснованную дозовую нагрузку (в соответствии принципом нормирования). При изменении В радиационных картограммах (изъятие/размещение ТРО) ограждение переносится в соответствии с указанием дозиметриста ОРБ.
- 4. Для транспортирования кондиционированных ТРО вне ЗКД 1,2 блоков используются контейнеры типа НЗК-150-1,5-П, относящиеся к классу ЗН в соответствии с «Общими положениями обеспечения безопасности атомных станций. НП-001-15».

- 5. При образовании ТРО категории ВАО разрабатывается отдельный план мероприятий, в который входят меры по обеспечению безопасности при обращении с ВАО в конкретном случае.
- 6. Все контейнеры при операциях по обращению с ТРО проходят радиационный контроль.
- 7. Все оборотные контейнеры, использовавшиеся при обращении с PAO, проходят дезактивацию.
- 8. Спецавтотранспорт, участвующий в транспортировке РАО подвергается радиационному контролю и при необходимости направляется на дезактивацию.
- 9. ЖРО в ОДИЦ образуются и хранятся в стальных емкостях, расположенных в хранилищах ЖРО, оборудованных физическими барьерами.
- 10. Во всех пунктах временного хранения/размещения РАО обеспечивается радиационный контроль в соответствии с «Регламентом радиационного контроля выводимых из эксплуатации блоков 1,2 Нововоронежской АЭС. Р-ОДИЦ-003».
- 11. PAO различных категорий должны храниться в различных упаковках (контейнерах, емкостях). Смешение PAO различных категорий запрещено.

В 2022 году в ОДИЦ:

- в процессе вывода из эксплуатации блоков № 1 и № 2 Нововоронежской АЭС образовано: 201,43 м3 собственных твердых РАО, из них 200,4 м3 категории ОНРАО; 1,034 м3 категории ВАО (РАО в виде надставок) и 92,5 м3 собственных жидких РАО, из них: 21,00 м3 категории НАО, 71,50 м3 категории САО;
- на КПП РАО переработано 1412,40 м3 твердых РАО, в результате образовано 22,68 м3 РАО в виде шлакового компаунда;
- на УГУ переработано 100,5 м3 жидких PAO, в результате образовано 14,8 м3 PAO в виде солевого плава.

Примечание – сведения приведены на основании данных государственных докладов о состоянии окружающей среды на территории Воронежской области, подготовленных в Департаменте природных ресурсов и экологии Воронежской области и в Управлении Росприроднадзора по Воронежской области.

6. Текущие затраты на охрану окружающей среды

В 2022 году текущие затраты ОДИЦ на охрану окружающей среды составили– 1093,0 тыс. рублей, из них на охрану атмосферного воздуха - 396,0 тыс. руб., на обращение с отходами - 479,0 тыс. руб., оплата услуг природоохранного назначения - 642,0 тыс. руб., согласно статистическому отчету за 2022 год по форме 4-ОС «Сведения о текущих затратах на охрану окружающей среды».

6.1. Плата ОДИЦ за негативное воздействие на окружающую среду

Текущие затраты на охрану окружающей среды и экологические платежи филиала ОДИЦ в 2022 году осуществлялись по видам негативного воздействия на окружающую среду:

- выбросы загрязняющих веществ в атмосферный воздух стационарными источниками;
 - размещение отходов производства и потребления.

Изменение (увеличение) в 2022 году структуры и сумм экологических платежей по сравнению с предыдущим отчётным 2021 годом более чем на 5% обусловлено тем, что в 2022 году на договорной основе были выполнены работы по разработке проектов ПДВ, ПНООЛР и формированию декларации о воздействии филиала ОДИЦ, что составляло большую часть суммы затрат по направлению охраны окружающей среды.

Плата за негативное воздействие на окружающую среду

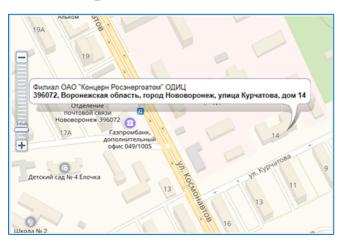
Показатели		Плата за год, (руб.)				
		2018	2019	2020	2021	2022
Плата за	В пределах	2,86	3,28	3,58	3,69	31,13
выбросы	ПДВ					
загрязняющих (вредных)	В пределах ВСВ	0	0	0	0	0
веществ в атмосферный воздух от стационарных источников	Сверхлимитны е выбросы	0	0	0	0	2148,18
	Bcero:	2,86	3,28	3,58	3,69	2 179,31
Плата за размещение отходов	В пределах лимитов	68460,14	185377,50	86736,90	119314,71	85 760,08
	сверхлимитное размещение отходов	0	0	0	0	0
Bcero:		68463,00	185380,00	86740,48	1149318,40	87939,39

7. Сведения о реализуемых мероприятиях в области охраны окружающей среды и их эффектах

7.1. Планы реализации экологической политики

Филиал АО «Концерн Росэнергоатом» ОДИЦ включен (впервые) в Перечень экологически значимых организаций Госкорпорации «Росатом» в середине декабря 2018 г. (актуализированный Перечень утвержден начальником Управления по работе с регионами Полосиным А.В. 14.12.2018). На основании поручения Госкорпорации «Росатом» в адрес АО «Концерн Росэнергоатом» направлен «План реализации экологической политики филиала АО «Концерн Росэнергоатом» «Опытно-демонстрационный инженерный центр по выводу из эксплуатации» (ОДИЦ) на 2022 год и на период до 2024 года» (далее – План).

В соответствии с Планом, запланированные на 2022 год мероприятия в целом реализованы, основные показатели по производственной деятельности приведены ниже:


- обеспечил переработку собственных и федеральных твердых радиоактивных отходов (TPO) в объеме 1412,40 м³ (105 %);
- обеспечил переработку жидких радиоактивных отходов (ЖРО) в объеме $100,5~{\rm m}^3~(101~\%)$;
- обеспечил выполнение работ по демонтажу оборудования своими силами и силами подрядных организаций в объеме 461,351 тонн (100 %);
- обеспечил выполнение работ по фрагментации оборудования своими силами и силами подрядных организаций в объеме 301,0 тонн (100%);
- обеспечил выполнение работ по дезактивации металлоконструкций собственными силами в объеме 251,857 тонн (100,7 %);
- производственные показатели по переработке (дезактивации) и удалению очищенного пластиката, вывода металла из-под радиационного контроля и реализации «чистого» металла в текущем году не планировались.

8. Социально-экологическая и информационно-просветительская деятельность

17 мая 2022 г. в Нововоронеже состоялись общественные слушания по материалам обоснования лицензии на осуществление деятельности в области использования атомной энергии, включая предварительные материалы оценки воздействия на окружающую среду «Вывод из эксплуатации блоков № 1 и № 2 Нововоронежской АЭС».

9. Адреса и контакты

Филиал АО «Концерн Росэнергоатом» Опытно-демонстрационный инженерный центр по выводу из эксплуатации (ОДИЦ) (входит в крупнейший дивизион Госкорпорации «Росатом» - «Электроэнергетический»).

Адрес: 396072, Воронежская область, город Нововоронеж, улица Курчатова,

дом 14Телефон: 8 (47364) 3-56-12

Факс: 8 (47364) 3-56-12

E-mail: odic@odic.rosenergoatom.ru

http://www/rosenergoatom.ru/

Контакты:

Директор филиала Кулеватов Анатолий Сергеевич, тел. 8 (47364) 3-56-12

Главный инженер Дятлов Алексей Витальевич, тел. 8 (47364) 3-56-01

Начальник отдела охраны труда и организации безопасности производства Володин Владимир Владимирович, тел. 8 (47364) 3-51-01

Начальник ИДУЦ Баталин Владимир Анатольевич, тел. 8 (47364) 3-51-00